Packaging Substrate Workshop Wrap Up

Bob Pfahl, iNEMI
Breakout Session (ends 10:30 am)

• **Introduction & your expectation**
 – Issues & Root cause (material properties) of warpage & solutions
 • 1st level chip joint yield (from assembly) due to strip warpage vs reflow, warpage level at substrate level (core warpage)
 • 2nd level SMT assembly
 – Substrate characteristics (Tg, curve temp vs reflow temp & reflow response)
 – Core material properties
 – PoP & CSP (fine pitch) assembly process
 – Board level SMT assembly yield (room temp vs reflow)
 – Warpage measurement metrology (substrate/packaging) & specification

• **Identity gaps, brainstorm options & priorities**
 – Strip vs single substrate
 – PoP (JEDEC spec only @ RT, top/bottom warpage) & CSP (fine pitch) assembly process

• **Recommendation of iNEMI projects (9:55am)**
 – Qualification criteria (acceptance, measurement method) including substrate, pkg, board levels
 – Identify key material properties (core, core/SM thickness, substrate, design (Cu trace/via), pkg assembly) and key contributors (die size, thickness) which impacts 1st level and 2nd level for different applications
 • Factor: process parameters (UF, MC etc), reflow profile, pkg pitch, PCB warpage improvement

• **Define project scope draft proposal (10:25am)**
Project 1

• Qualification criteria (acceptance, measurement method) including substrate, pkg, board levels
 – Problem statements:
 • The current standard is not adequate to predict good yield results at 1st and 2nd level assembly
 • Measurement methods (dimensional and test) not common
 – Objectives
 • Define the qualification method and criteria e.g. sample size, precondition, variations of material and processes (1st and 2nd level).
 • Establish measurement methods
 – Expected Outputs
 • Procedure and criteria reference for OEM and suppliers
Project 2

• Identify key material properties (core, core/SM thickness, substrate, design (Cu trace/via), pkg assembly) and key contributors (die size, thickness) which impacts 1st level and 2nd level for different applications
 • Factor: process parameters (UF, MC etc), reflow profile, pkg pitch, PCB, environmental factors (shipping and storage; moisture effect).

– Problem statements:
 • No clear understanding of the key contributors to the 1st and 2nd level assembly

– Objectives
 • Understand the key contributors
 • Establish understanding to modulate the key contributors

– Expected Outputs
 • A set of primary parameters (materials, design and processes) and the working window to control the warpage through supply chain
 • Recommendation/guidelines for shipping and storage.
Miniaturization

Facilitator: Hamid Azimi, Intel
Presenter: Claudia Beckering, Epcos
Who participated?

- Hamid Azimi, Intel (Facilitator)
- Charan Gurumurthy, Intel (Facilitator)
- Claudia Beckering, Epcos (Presenter)
- Kenya Misu, DuPont
- JY Kim, Amkor
- Steve Yang, NanYa
- Takada-san, Ibiden
- Nakamura-san, Ajinomoto
- Tsuriya-san, Freescale
- Philippe Bourgeon, TI
- Luis Rivera, TI
- YG Ko, SEMCO
Brainstorm

• BP < 130 micron; First level interconnect enabling
• L/S < 10/10 micron; tolerances, Layer count
• L/S finer on laminate vs. Build up
• Electrical Performance Requirements
• Package on Package (POP) – generic via and land diameter; via density
• Embedding active and passives
• Materials
• FC – CSP – fine L/S Challenge
• Wafer level packaging – backend Si technology for wiring substrate
• TSV (through Si via)
• Litho alignment/SR registration
• Metrology and manufacturing equipment
• Testing and Inspection
• PTH diameter
• Placement accuracy for component on mother board
• Z- height (Thinner substrate / Coreless)
• Surface finish / Solder joint reliability
• SR defined or pad defined
• Warpage (other team) – rigidity of substrate
• **Miniaturization = Wiring density**
 • BP < 130 micron; First level interconnect enabling
 • L/S < 10/10 micron; tolerances, Layer count
 • L/S finer on laminate vs. Build up
 • Electrical Performance Requirements
 • Package on Package (POP) – generic via and land diameter; via density
 • Embedding active and passives
 • Materials
 • FC – CSP – fine L/S Challenge
 • Wafer level packaging – backend Si technology for wiring substrate
 • TSV (through Si via)
 • Litho alignment/SR registration
 • Metrology and manufacturing equipment
 • Testing and Inspection
 • PTH diameter

• Assembly interaction challenges (holistic approach team – Mario)
 • Placement accuracy for component on mother board
 • Z- height (Thinner substrate / Coreless)

• Reliability (holistic approach team – Mario):
 • Surface finish / Solder joint reliability
 • SR defined or pad defined

• Warpage (other team) – rigidity of substrate
Wiring Density Program – Project Selection

These priorities consider Semi-additive Processing (SAP), Build Up (BU) and Laminate options. They all consider cost and reliability.

Top priority:
1. Material set (better dimensional stability, better adhesion, smoother profile)
2. Low cost litho/laser equipment for insitu shrinkage correction
3. New generation plating with better tolerances
4. Next generation of inspection and test of fine traces

Next priority:
1. Embedding active and passive infrastructure
Holistic Approach

Facilitator: Mario Bolanos, TI
Presenter: Bernd Appelt, ASE
Team Members

- Mario Bolanos – TI
- Bill Bader – iNEMI
- Bernd Appelt – ASE
- Akira Matsunami – Ti
- Isao Yamada – Intel
- Koichi Nonomura – Kyocera SLC
Brainstorming

- Pick a single package and utilize it as a pilot vehicle to create a holistic modeling approach and outline
 - Model would be a design tool that defines critical materials properties and proposed specifications for a specific package type.
 - Team would initially determine which package.
 - Data depth/accuracy in critical materials properties will be required for model effectiveness.
 - Will require data experts from materials, packaging, and substrate suppliers
 - Package selected needs to be one which is defined as a market need say 2-4 years out in the future.
 - Application details and specs need to be provided from the OEM(s) side. – coverage of multiple applications in desirable
Brainstorm

• Create a model and flow chart for new packages that covers entire supply chain from raw materials through system implementation.
• Create a 2010 plus analytical assessment of optimizing Time to Yield covering design, materials, packaging.
• Methodology to bring end customer requirements forward in meaningful way to the substrate and packaging suppliers.
• Reliability Methodology for substrates that supports comprehensive usage models and end product reliability requirements.
 – Pick a market segment and/or product line as a pilot vehicle
 – Good potential research cooperative project with universities
Priority Projects

- Pick a single package and utilize it as a pilot vehicle to create a holistic modeling approach and outline
 - Model would be a design tool that defines critical materials properties and proposed specifications for a specific package type.
 - Team would initially determine which package.
 - Data depth/accuracy in critical materials properties will be required for model effectiveness.
 - Will require data experts from materials, packaging, and substrate suppliers.
 - Package selected needs to be one which is defined as a market need say 2-4 years out in the future.
 - Application details and specs need to be provided from the OEM(s) side – coverage of multiple applications in desirable.
Priority Projects

• Create a 2010 plus analytical assessment of optimizing Time to Yield covering design, materials, packaging
 – Need to build in a methodology for low volume learning from substrate supplier, through packaging, then into system level yields
 • Covers data assessments including Cpk, FA. Etc
 – Financial contracts need to specify ramp quantities and time frame – Developing a commitment from both sides
 – Cooperative design team from substrate through system that leverages off existing BKM’s and proven specifications where possible
 – Define and use standards on areas such as surface finishes
 – May require brand new predictive tools that enable identification of key technology challenges, equipment or tool investments
Project Priorities

• Reliability Methodology for substrates that supports comprehensive usage models and end product reliability requirements.
 – Pick a market segment and/or product line as a pilot vehicle
 • Cover details of rel specs – life cycle, thermal cycles, shock test, etc.
 – Good potential research cooperative project with universities
 – OEM’s to provide detailed specifications/requirements – mechanical and electrical
 – Substrate suppliers to provide material properties early to support OEM simulations
 – May require that new metrology be developed to support the reliability model
 – New acceleration methods are highly desirable to shrink TTM
 – Define interfacial & chemical properties – define metrology requirements and methods
Proposed Initiatives

- Warpage
 - Qualification Criteria including Substrates, Pkg, board levels
 - Identify primary factors of warpage
- Miniaturization
 - Wiring Density Program
 - Material Set
 - Low Cost Litho/Laser
 - Plating
 - Inspection and Test
- Holistic Approach
 - Develop Holistic Modeling Approach (Using One Package)
 - Optimizing time to yield covering design, materials, packaging
 - Reliability Methodology for Substrates
Next Steps

• Identify Champions and interested Individuals and Firms for each proposal

• Post List of Proposals on Web Site

• Notify iNEMI (Jim Arnold) of which Initiatives you want to pursue: jim.arnold@inemi.org

• Jim Arnold from iNEMI Staff will work with each Champion to Establish Scheduled WebEx meetings to further develop each initiative.
Availability of Presentations

Presentations will be available for download at:

http://www.inemi.org/cms/newsroom/Presentations/Packaging_Substrates_Nov09.html
Packaging Substrate Workshop
Focusing on Technology for Miniaturization

Meeting Scope: Industry workshop to identify gaps in organic substrate technology that need to be addressed to facilitate miniaturization of electronics packaging.

The workshop will:
- Review organic substrate technology roadmaps and compare vs. industry requirements – Identify Gaps
- Establish action groups to address specific issues raised in meeting
- Brainstorm options and priorities
- Propose initiatives

We achieved our objectives!
www.inemi.org

Email contacts:
Bill Bader
Bill.Bader@inemi.org

Bob Pfahl
bob.pfahl@inemi.org

Haley Fu-Asia
haley.fu@inemi.org