KNOWLEDGE BASED QUALIFICATION
MEETING CHALLENGES OF NEW MARKETS AND NEW TECHNOLOGIES

Milena Vujosevic
Intel

Link to recording (1 hr 31 min) (available for about 6 months after webinar)
https://inemi.webex.com/inemi/lsr.php?RCID=be32b5ae6db049ebac004d0118d888d7

iNEMI Workshop, October 19, 2017
Acknowledgment

Dr. Min Pei
Dr. Karumbu Meyyappan
Dr. Ru Han
Dr. Sibasish Mukherjee
Mr. Alan Lucero
Dr. Robert Kwasnick
Dr. Ion Sauciuc
Dr. Vasu Vasudevan
Dr. Vijay Kulkarni
Dr. Pardeep Bhatti
Intel Disclaimer

This presentation is not meant to be exhaustive and is provided as is, for convenience and information only and is not to be relied upon for any purpose, other than educational. The presentation is intended only to provide the general insights, opinions, and/or internally developed guidelines and procedures of Intel Corporation (Intel). The information in this presentation may need to be adapted to your specific situation or work environment.

TO THE EXTENT INFORMATION IN THIS PRESENTATION IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS, NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS.

A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS, COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS’ FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENCE IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel assumes no liability and disclaims any express or implied warranty regarding the information in the presentation, including any liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel expressly disclaims any liability that you, or a third party might suffer due to your failure to heed the warning in this disclaimer.

This presentation contains information on products in the design phase of development. Intel makes no representation or warranties regarding this presentation’s accuracy or completeness and accepts no duty to update this presentation based on more current information. The information in this presentation is subject to change without notice. Intel may make changes to specifications and product descriptions at any time. Do not finalize a design with this information.

Intel may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Any third parties referenced in this presentation are provided for information only. Intel accepts no liability for the quality of third party suppliers and cannot guarantee the correct or suitable operation of third party products. INTEL DOES NOT ENDORSE ANY SPECIFIC PRODUCT OR ENTITY MENTIONED IN THIS PRESENTATION.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. Other names and brands are the property of their respective owners.

Copyright © 2013, Intel Corporation. All rights reserved.
ELECTRONICS EVERYWHERE
NEW USAGE MODELS

SMALLER FEATURES
HIGH COMPLEXITY

RAPID PROLIFERATION
SHORT TTM

TeleComm Era
Internet Era
“Smart” Era
Productivity Era

Rapid Proliferation
Short TTM
HOW TO DEFINE QUALIFICATION CRITERIA TO CONTINUOUSLY MEET CUSTOMER’S Q&R NEEDS WHEN TECHNOLOGY IS RAPIDLY CHANGING?
Reliability response choices

STANDARDS (STRESS) BASED QUALIFICATION (SBQ)
Product is “as good” as past products

“We did the same as the rest of the industry”

KNOWLEDGE BASED QUALIFICATION (KBQ)
Product engineered for real usage

“We did what was necessary to protect the customer”

Intel’s approach: **Knowledge Based Qualification (KBQ)**
OUTLINE

- KBQ: Fundamental Building Blocks
- KBQ: Understanding Use Conditions
- KBQ: Capturing the Physics
- Implications and Examples
- Conclusions
Use Conditions (UC)

Physics of Failure (PoF) based failure metrics

PoF and UC Based Reliability models and requirements

Well Controlled Component Test

Quality & Reliability

Design for Reliability

Cost

Survey

UC Behaviors Scenarios

Customer Tests Envelope

Measurements
User behavior and operating conditions can drive failure.
USE CONDITIONS: SBQ VS. KBQ

SBQ: Rudimentary understanding of UC

KBQ: Measured usage

KBQ quantifies UC. It can be complicated but it is very important!
OUTLINE

- KBQ: Fundamental Building Blocks
- KBQ: Understanding Use conditions
- KBQ: Capturing the physics
 - Challenges with Standard (Stress) Based Qual (SBQ)
 - Overcoming challenges of SBQ
- KBQ: Implications and Examples
- Conclusions
STANDARDS
<table>
<thead>
<tr>
<th>Name</th>
<th>Empirical acceleration model/equation</th>
<th>Primary stress</th>
</tr>
</thead>
</table>
| Coffin-Manson | \[
\frac{N_{use}}{N_{test}} = \left(\frac{\Delta T_{use}}{\Delta T_{test}} \right)^{-n}
\] | \(\Delta T\) |
| Norris-Landzberg | \[
\frac{N_{use}}{N_{test}} = \left(\frac{\Delta T_{use}}{\Delta T_{test}} \right)^{-n} \left(\frac{f_{use}}{f_{test}} \right)^{m} e^{1414 \left(\frac{1}{T_{hi,use}} - \frac{1}{T_{hi,stress}} \right)}
\] | \(\Delta T, Tmax\) |
| Peck | \[
\frac{N_{use}}{N_{test}} = \left(\frac{RH_{use}}{RH_{test}} \right)^{-n} \text{Exp} \left(\frac{E_{a}}{k} \right) \left[\frac{1}{T_{use}} - \frac{1}{T_{test}} \right]
\] | RH-relative humidity |
| | | |
Reliability Risk Assessment vs. Field Risk

Qual Requirements

\[\frac{N_{\text{use}}}{N_{\text{stress}}} = \left(\frac{\Delta T_{\text{use}}}{\Delta T_{\text{stress}}} \right)^{-n} \]

Not impacted by brd. thickness

Impacted by board thickness

Use Condition Risk

FLI Stress (normalized)

Ex: FLI qualification
ACCOUNTING FOR GEOMETRY (FF)

Example: Solder Joint T-M qualification

Geometry A

Solder Joint (SJ)

Geometry B

Qualification requirement

\[
\frac{N_{\text{use}}}{N_{\text{test}}} = \left(\frac{\Delta T_{\text{use}}}{\Delta T_{\text{test}}} \right)^n \left(\frac{f_{\text{use}}}{f_{\text{test}}} \right)^m \left[\frac{1}{\frac{1}{\frac{1}{f_{\text{failure}}}} - \frac{1}{\frac{1}{f_{\text{test}}}}} \right]
\]

Use Condition Risk

<table>
<thead>
<tr>
<th>Requirement (A)</th>
<th>Requirement (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ damage (A) >> SJ damage (B)</td>
<td></td>
</tr>
</tbody>
</table>

Not a function of FF

A function of FF
ACCOUNTING FOR SYSTEM BOUNDARY CONDITIONS (BC)

Boundary conditions A

Boundary conditions B

Qualification requirement

$$\frac{N_{\text{use}}}{N_{\text{test}}} = \left(\frac{\Delta N_{\text{use}}}{\Delta N_{\text{test}}} \right)^n \left(\frac{f_{\text{use}}}{f_{\text{test}}} \right)^m \left(\frac{t_{\text{fail}}}{t_{\text{stress}}} \right)^{\frac{1}{n}} \left(\frac{r_{\text{strain}}}{r_{\text{stress}}} \right)^{\frac{1}{m}}$$

Use Condition Risk

Requirement (A) = Requirement (B) SJ damage (A) ≠ SJ damage (B)

Not a function of BC A function of BC

CHALLENGE
ACCOUNTING FOR ACTUAL USE CONDITIONS

Ex. T-M FLI qual

<table>
<thead>
<tr>
<th>Use Condition</th>
<th>Empirical Acc. Model</th>
<th>Requirements (N_{stress})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumed</td>
<td>$N_{use} / N_{stress} = (\Delta T_{use} / \Delta T_{stress})^n$</td>
<td>750 TCB</td>
</tr>
<tr>
<td>Measured UC</td>
<td>$N_{use} / N_{stress} = (\Delta T_{use} / \Delta T_{stress})^n$</td>
<td>It depends!!</td>
</tr>
</tbody>
</table>

CHALLENGE

- Extreme sensitivity to sampling rate!
<table>
<thead>
<tr>
<th>Challenges</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not account for FF (architecture, geometry, materials)</td>
<td>Defined in terms of applied stress, (like ΔT)</td>
</tr>
<tr>
<td></td>
<td>Applied stress is often a very remote proxy for damage</td>
</tr>
<tr>
<td>Do not account for system boundary condition</td>
<td>$\text{Damage} = f(\text{applied stress, FF, system BC, materials...})$</td>
</tr>
<tr>
<td>Have difficulties accounting for measured UC</td>
<td>Every ΔT (both large and small) is considered to contribute to damage; more UC cycles always results in more damage and higher requirements</td>
</tr>
</tbody>
</table>
HOW TO GET CLOSER TO DAMAGE?
GETTING CLOSER TO THE PHYSICS

Example: Solder Joint (SJ) qual in temp.cycling (TC)

- From UC to requirements via fundamental (PoF) metrics
- Computational/Empirical methods necessary to leverage the PoF metric

Min Pei, Ru Han, Daeil Kwon, Alan Lucero, Vasu Vasudevan, Robert Kwasnick, Pravin Polasam, "Define Electrical Packing Temperature Cycling Requirement with Field Measured User Behavior Data”, ECTC 2013
<table>
<thead>
<tr>
<th>Approach</th>
<th>Metric</th>
<th>Use Conditions</th>
<th>Acceleration equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBQ Standard (stress) based Qualification</td>
<td>Applied stress: (ex: ΔT)</td>
<td>Representative user</td>
<td>MTTF vs. ΔT</td>
</tr>
<tr>
<td>KBQ Knowledge-based Qualification</td>
<td>PoF metric (ex: ISED)</td>
<td>Field measured users</td>
<td>MTTF vs. PoF metric</td>
</tr>
</tbody>
</table>

KBQ: Based on the PoF metrics and measured use conditions. Predictive modeling/simulation are necessary to overcome the limitations of empirical reliability models.
HOW **KBQ** OVERCOMES CHALLENGES OF **SBQ**
KBQ: REALISTIC ACCOUNT OF USE CONDITIONS

Empirical model: Damage Accumulation

PoF model: Damage Accumulation

Normalized Requirement

M. Pei, M. Vujosevic, S. Mukherjee, Knowledge Based requirement Calculation for server BGAs temperature cycling Qualification, InterPACK2017
KBQ: ACCOUNTING FOR FF

<table>
<thead>
<tr>
<th>FF</th>
<th>SBQ</th>
<th>KBQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UC: 5cycles/day</td>
<td>UC: measured</td>
</tr>
<tr>
<td></td>
<td>1135 TCT</td>
<td>375 TCT</td>
</tr>
<tr>
<td>SBQ</td>
<td>1135 TCT</td>
<td>95 TCT</td>
</tr>
<tr>
<td>SBQ</td>
<td>1135 TCT</td>
<td>210 TCT</td>
</tr>
</tbody>
</table>

Geometry drives requirements
KBQ: ACCOUNTING FOR SYSTEM BC

No Adhesive | With Adhesive

Use Condition

Accel. test

SLI Qual. Requirements: KBQ vs. SBQ

SBQ: Requirements not dependent on adhesive

KBQ: Adhesive properties drive requirements

R. Han, M. Vujosevic, M. Pei, Physics Based Requirements for Qualification of BGA components in Temperature Cycling, InterPACK2015
HOW DO WE KNOW THAT THESE RESULTS MAKE SENSE?

Validation #1: Field data + End-of-Life (EOL) testing

EOL data: No SJ crack seen after 3.5 years.
EOL testing: No crack seen after more than 23,000 added power cycles.

BGA designed for 7 years life using empirical SBQ models

EOL experimental data indicate life > 40 years

SBQ: wrong conclusion about the performance in the field.

V. Vasudevan, et. al, ESTC2014
HOW DO WE KNOW THAT THESE RESULTS MAKE SENSE?

Validation #2: BGA Power cycling tests

SBQ: Empirical model projects life that is very different (in the case smaller) than the actual life
OUTLINE

- KBQ: Fundamental Building Blocks
- KBQ: Understanding Use conditions
- KBQ: Capturing the physics

- Implications and Examples

- Conclusions
KBQ IMPLICATIONS

EXAMPLES
Enabling Design Optimization

NCTFs ~ [Qual. Requirement – Comp. Capability]

Qual. Requirement:

- **NCTF definition:** KBQ: Potential to reduce component size
- **Implications on cost and board space**

Impact of KBQ on package size reduction (UC+ physics metrics + modeling)

Standards Based Qual

- Empirical Based
- KBQ
- Physics + Modeling

M. Vujosevic, ESCTC2014
PROTECTING CUSTOMERS

SLI (Second Level Interconnects)

TMI (Through Mold Interconnects)

Memory

KBQ: TC Requirements (normalized)

SLI

TMI

SLI: KBQ > SBQ -> SBQ not conservative!!!! Component passes SBQ but is likely to fail in the field

KBQ protects customers!!
ENABLING NEW PROCESS

SLI: (Second Level Interconnects)
TMI: (Through Mold Interconnects)

Challenging SMT

SBQ req: too conservative -> driving design choices that can limit SMT optimization

KBQ can help process/assembly optimization of new architectures
ENABLING NEW TECHNOLOGIES

LOW TEMPERATURE SOLDER (LTS) PASTE: path for reduced yield loss in SMT

TC Margin Loss ~ 50% in component qual tests
SBQ requirements not met

<table>
<thead>
<tr>
<th>Risk Mitigation</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add sacrificial solder joints</td>
<td>Increase of package size</td>
</tr>
<tr>
<td>Improve paste ductility</td>
<td>Rel still not on par with SAC (new paste materials being developed/evaluated)</td>
</tr>
<tr>
<td>Add underfill</td>
<td>Cost increase + rework implications</td>
</tr>
<tr>
<td>Reduce conservatism in SBQ</td>
<td>KBQ requirements likely to be met</td>
</tr>
</tbody>
</table>

SBQ: Requirements NOT paste material dependent. Many LTS formulations do not meet SBQ
KBQ: Requirements are paste material dependent. LTS paste likely to meet KBQ for BGAs

KBQ reduces conservatism of SBQ and can enable new technologies

M. Vujosevic, SMTAI2016
KBQ: ADDITIONAL EXAMPLES

• KBQ for BGA Shock
• KBQ for Socket Fretting
KBQ FOR BGA SHOCK:
DEFINITION OF REQUIREMENTS

System Level / Use Condition Demand (G_{system})

Component level Requirement (G)

SJ Damage Metric: STRESS

From use conditions to requirements via POF metric

<table>
<thead>
<tr>
<th>Approach</th>
<th>Damage Metric</th>
<th>User Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBQ</td>
<td>Board strain, or Shock table accel. G or Top package accel. G</td>
<td>Legacy value</td>
</tr>
<tr>
<td>KBQ</td>
<td>Solder joint stress</td>
<td>Field measured users</td>
</tr>
</tbody>
</table>

M. Pei, G. Arakere, M. Vujosevic, “Knowledge Based Qualification Methodology to Evaluate Shock Induced Risks in BGA Components”, ASME InterPACK2017
KBQ FOR SOCKET FRETTING: DEFINITION OF REQUIREMENTS

Use Condition Demand (System G_{RMS})

Fretting PoF metric: Socket Pin Sliding Distance

Component level Requirement ($Grms$)

From use conditions to requirements via POF metric

<table>
<thead>
<tr>
<th>Approach</th>
<th>Damage Metric</th>
<th>User Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBQ</td>
<td>Energy in $Grms$</td>
<td>Legacy value</td>
</tr>
<tr>
<td>KBQ</td>
<td>Pin Sliding Distance</td>
<td>Field measured users</td>
</tr>
</tbody>
</table>

CONCLUSIONS
Standards are necessary but not sufficient. The new reliability frontier is knowledge based. Use of contemporary tools of engineering is needed. Standards need to further evolve to meet the challenges of our time.
Thank you!